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The GKR Protocol




GKR Circuit

Layered arithmetic circuit C(w € ) =y € F™
Only addition and multiplication gates

n inputs

m outputs,

d layers

4/ 41



Outputs Y

Layer 0

Layer 1

Layer 2

Inputs wy Wo Wy w,
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Polynomial Extension of W,

W.(a) e B% — [
add.(a, b, c) € Bs+2sin 5 B

mul,(a, b, c) € B2 — B
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Polynomial Extension of W,

W.(a) e B% — [
add.(a, b, c) € Bs+2sin 5 B

mul,(a, b, c) € B t25is1 — B

Wia)= > add;(a,b,c)(W,1(b) + W, (c)) +
b,ccB®i+1

~~

mul, (a, b, ) - W, (b) - Wy, (c)

1
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Proving the Output of the Circuit

« Prover claims output of circuit is y’ = W’
 Actual outputis y = W,
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Proving the Output of the Circuit

« Prover claims output of circuit is y’ = W’
 Actual outputis y = W,

rep Fso W (r)=Wy(r) =W =W, = W' =W,
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Wolr)= Y addy(r,b,c)(Wy(b) + Wi (c)) +

b,cc1

I;1\1110 (’I", b7 C) | I’}\VJl (b) | I7[/'/1 (C)
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Wolr)= Y addy(r,b,c)(Wy(b) + Wi (c)) +

b,cc1

I;l\ﬁlo (’I", b7 C) | I’}\VJl (b) | I7[/'/1 (C)

Sumcheck polynomial
fo(b, €) = addy (r, b, ) (W (b) + Wi (c) ) + muly(r, b, c) - Wy (b) - Wy (c)
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Wolr)= Y addy(r,b,c)(Wy(b) + Wi (c)) +

b,cc1

I;l\u/lO (’I", b7 C) | I’}\VJl (b) | I7[/'/1 (C)

Sumcheck polynomial
fo(b, €) = addy (r, b, ) (W (b) + Wi (c) ) + muly(r, b, c) - Wy (b) - Wy (c)

Last round of sumcheck
b/l, Ci ER [Fsi"‘l
fo(by,ct) = addy(r, by, ct) (W, (by) + Wy(ch)) +

~~

1(b1) - Wi (ef)

HT{IIO(TE)? bi? Ci) )
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Idea: Verity Evaluations using Sumcheck

f1(b, ¢) = add, (b, b, ¢) (W, (b) + Wy(c)) + mul, (b7, b, ) - Wy(b) - Wy(c)

f1(b, ¢) = add, (cf, b, e) (Wy(b) + Wy(c)) + mul, (e}, b, c) - Wy (b) - Wy(c)

9/ 41



Exponential!



Combining two claims to one

a(by, €p) = Wy(bg) + a - Wi (cp)

= ( Z g&?il(b(’),b, C)<W2(b> + W2<C)) +r;1;11<b6>bac) ’ Wz(b) ' Wz(@) +

b,ccBs2

~~

Q- ( Z add, (cj, b, C)<W2(b) + W2(C)) +mul, (c), b, ¢) - Wy(b) Wz(c))

b,ceB=2

= > add,(bg, b, c)(Wy(b) + Wy(c)) + mul, (by, b, ¢) - Wy(b) - Wy(c) +

b,ccBs2

o - add, (cf, b, ) (W (b) + Wy(c)) + a - mul, (cf, b, c) - Wy(b) - Wy(c)

= > (add, (b}, b,¢) + o add, (ch, b, c) ) (Wy(b) + Wy(c)) +

b,ceBs2

(mul, (b}, b, ¢) + a - muly (ch, b, e)) (Wy(b) - Wy(c))
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Combining two claims to one

We have:

vy = p(Ty), Vg == p(7y)
Q(Xla ) X2£) "= p(X17 "'7X€) + « - p<X€—|—17 ceey X2£g)

q(ry,79) =v; + - v,
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Combining two claims to one

We have:

vy = p(Ty), Vg == p(7y)
Q(Xla ) X2£) "= p(X17 "'7X€) + « - p<X€—|—17 ceey X2£g)

q(ry,mg) = vy + vy
Proof: Assume v; # p(ry) V vy # p(ry), but g is defined as above:

e(X) =v; + X vy — (p(ry) + X - p(ry))
deg(e) 1

F |F

Prle(a) =0 | e(X) # 0] =
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Combining two claims to one

The next round we sumcheck:
f1(b,c) := (add, (b), b,c) + a - add, (cj, b, c) ) (Wy(b) + Wy(c)) +

(mul (b, b, ¢) + o - muly (c), b, ¢) ) (Wy(b) - Wy(c))
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Combining two claims to one

The next round we sumcheck:
f1(b, €) == (add, (b), b, €) + o - add; (c5, b, €) ) (W (B) + Wy(e)) +
(mul (b, b, ¢) + o - muly (c), b, ¢) ) (Wy(b) - Wy(c))
And the verifier checks:
m, = (add, (bj_,, b}, c]) + o - add;(c}_1, b}, ;) ) (ve; + ver ) +

(mul;(b]_,, b}, ¢}) + o - mul(c)_y, b}, ¢])) (vg; - vy )

13/ 41



Full Protocol: Preprocessing

P sends W’ to U claiming that W’ = W),. U then picks out a random 7. After this
point, P wants to prove that my; = W, (7).

%744 ~
W’ : B% — [F rr g FPo,my = W'(r)
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Full Protocol: Round zero

~~

fo(b, ) = addy(r, b, c) (W, (b) + Wy(c)) + muly(r, b, c) - Wy (b) - Wy (c)

Zb,CEle fO(b7 C) = my

N
~

At the end of the protocol, P sends U the evaluations of Vyy, = VV1 (bp) and v,/ :=
Wl (¢}), so U can make the final check in the sumcheck protocol.

Upy» Ve mg = addy (7, b, f) - (Ve + Ve ) +
Upy = W, (bg), vey = Wi(c)) ’

— ’
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Full Protocol: Round ¢

~~ ~~

fi(b,c) := (add,(bj_;,b,¢) + o - add;(c]_1,b,¢)) (W11 (b) + W11 (c)) +

~~

(mul;(b_,b,¢) + a-mul,(c] ;,b,¢)) (W1 (b) - W,y (c))

8

f’L<b7 C) < (8% ER [F
Zb,ce[ﬂasiﬂ fi(b,€) =m,

i N\
A\ [4

m} o= (add(bf_1,bf,¢;) +a- addi(ef 1, b}, ¢f)) (ve; + vey) +

7 29 —1

1—19 2y =1 1—19 ¥ =1

(mul; (b]_y, b}, ¢}) + a - muly(c]_;,b},¢})) (vp; - V)

— T / Vpry U
vy = Wig1(b5), b2 Ve; .
o P My =M,

/

c, = i+1<ci)
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Full Protocol: Round d

At the input layer d, U has two claims Vg, and v, . U constructs Wd from w. U
then finally checks that W, (b/,_ 1) = Vpy, and W,(c)y) < v,

Cag—1°
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Soundness




Soundness: Checks

Preprocessing:
o CheCk W/ é WO

« Soundness Error: s, /||
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Soundness: Checks

Preprocessing:
o CheCk W/ é WO

« Soundness Error: s, /||

Sumcheck Round j:

+ Check £ (r; 1) £ £, (0) + £;7 (1)
« Soundness Error: deg(f-(ﬁ /|F| = 2/|F|

(/

19/ 41



Soundness: Checks

Preprocessing:
o CheCk W/ é WO

« Soundness Error: s, /||

Sumcheck Round j:

+ Check £ (r; 1) £ £, (0) + £;7 (1)
» Soundness Error: deg f.(J) /|F| = 2/|F|

(/

GKR Round ::

o Check: m; = m/

« Soundness Error: W%\
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Soundness Bound
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Efficiency




Efficiency: Communication O(S, + d - 1g(.5))

e Preprocessing: W', which has size 2% = §,.
« Round i: O(s; ;) |
> One sumcheck: O(E 1 deg, (f( ))) = 0(8;41)

71=1
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Efficiency: Communication O(S, + d - 1g(.5))

e Preprocessing: W', which has size 2% = §,.
« Round i: O(s; ;) |
> One sumcheck: O(E 1 deg, (f( ))) = 0(8;41)

71=1

O(SOJFESM): (SO—I—Zlg ) O(S, + d - 1g(9))
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Efficiency: Verifier O(S, + d - 1g(S) + S + n)

« Proportional to communication cost: O(S, + d - 1g(S))
. Evaluating add, mul: O(t) (bounded by O(S))
o The input layer: O(n)
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Efficiency: Verifier O(S, + d - 1g(S) + S + n)

« Proportional to communication cost: O(S, + d - 1g(S))
. Evaluating add, mul: O(t) (bounded by O(S))
o The input layer: O(n)

O(Sy+d-lg(S)+t+n)=0(S, +d-1g(S)+S+n)
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Efficiency: Prover O(S®)

Efficiency: Prover Runtime per Sumcheck
O(2°-T) =0(2%#1 - T)

(SZ1 - (S; +Sis1))

(St + S:5%1)

0,
0,
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Efficiency: Prover O(S®)

Efficiency: Prover Runtime per Sumcheck
O(2°-T) =0(2%#1 - T)
= O(S%1 - (Si + Sit1))
— O(SEH + SiSz'2—|—1)
Efficiency: Prover Total

O(dz_f(Sz'SiQH + S?—i—l)) = 0(5°)

1=0
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Need for Speed - A GKR-
Based Grand Product Proof




The Grand Product Proof

Layer 0

Layer 1

Layer 2
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The Grand Product Proof

Layer 0

Layer 1

Layer 2

Wi(a)=> eq(a,b) - W, (b ] 0)- W, (b 1)
beB?
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The Grand Product Proof

Layer 0

Layer 1

Layer 2

Wi(a)= ) eq(a,b)- Wi (b | 0) W1 (b 1)

beB?
8’1:22'7 S,L:2Z
d o
52227’:2‘”1—1:27},—1
2=0
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The Sumcheck Polynomial

q(r;_1) =W 1 (r;1 || 0) +aW,; (r,; || 1)

= (Z €Qer, , 1 0)(B) - Wipa (b 0)- Wiy (b | 1)) T

beB?

(Z o €q(_, 1 1)(B)  Wipa (b 0)- Wi (b | 1))

bel?

= Z (5%«@._1 10)(b) +a-eqp. 1)(5)) Wi (0] 0)- Wia (b 1)
beB:
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The Sumcheck Polynomial

q(r;_1) =W 1 (r;1 || 0) +aW,; (r,; || 1)

= (Z €Qer, , 1 0)(B) - Wipa (b 0)- Wiy (b | 1)) T

beB?

(Z o €q(_, 1 1)(B)  Wipa (b 0)- Wi (b | 1))

bel?

= Z (5%«@._1 10)(b) +a-eqp. 1)(5)) Wi (0] 0)- Wia (b 1)
beB:

Sumcheck Polynomial:

fi(b) = (e~q('ri_1 || 0)(b) +a-eq, 1)(b)) ' Wz’—l—l(b | 0) - Wi—l—l(b | 1)
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What about round zero? There’s only a single gate.
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What about round zero? There’s only a single gate.

We simply skip it!
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What about round zero? There’s only a single gate.

We simply skip it!

Wo(z) = eq(z,b) - Wy(b || 0) - Wy(b | 1)
becBO
= &q(, () - W1(0) ] 0)- Wi(() | 1)
— Wl(o) ) N1(1>
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Full Protocol: Preprocessing

The prover sends evaluations véo), vgo) claiming that 'UE,O) = Wl (0), v§°> = Wl (1) and

thus y = v(()o) - ")(10)-

~ (0) ,(0)
”(()0) = W1(0), Yo » Y1
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Full Protocol: Round ¢

fi(b) = (e~Q(rH 10)(b) +a-€q,. 1)(5)) Wipa(b ] 0)- Wiy (b] 1)

«
fi(b) 4 acpl
Zb,cG[EBi fz(b) = m;
i = (4) , (2) 7 - i i
o) = W, (r, | O), v, v m; £ € o(rs) vy ) +
vy == Wi (r; | 1) a- €, , 1T vy - vy
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Full Protocol: Round d

At the input layer d, U has two claims. U constructs Wd from w and perform a final

check.
d—1) 2 T
o L W(ryy | 0) A
d—1) 2 T
A LWy (rg | 1)
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The GKR-Based Grand
Product Proof - Efficiency




Linear Prover: Main idea

o If each round of sumcheck takes O(Zi_j ) time, then:

O (Z 2”) =0 (i 2”) =0(2'—1) =0(2)

J=1 g=1
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Linear Prover: Main idea

o If each round of sumcheck takes O(Zi_j ) time, then:

O (Z 2”) =0 (i 2”) =0(2'—1) =0(2)

J=1 g=1

« Prover cost is dominated by the sumchecks, so this leads to:

O (Zd; 2%') = 0(2%1) = 0(2%) = O(n)

33/41



Linear Prover: Use Lookup Tables
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Linear Prover: Use Lookup Tables

a — (’r']_, cee ?“j, t, .CC]_, cee LIJ‘Z),

"~ ~~

fila) = (e~Q(ri_1 || 0>(a) +a-eqq, | 1)(‘1)) -Wiii(a) - Wi (a)

=)

= (€qr,_, jo)(@) + - €44, | 1)(@)) - Wiyi(a) - Wiy (a)

 Constant time evaluation of f,!
 deg(f;) + 1 = 4 points, still constant time.
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Linear Prover: Use Lookup Tables

a — (’r']_, cee ?“j, t, .CC]_, cee LIJ‘Z),

"~ ~~

fila) = (e~Q(ri_1 || 0>(a) +a-eqq, | 1)(‘1)) -Wiii(a) - Wi (a)

=)

= (€qr,_, jo)(@) + - €44, | 1)(@)) - Wiyi(a) - Wiy (a)

 Constant time evaluation of f,!
 deg(f;) + 1 = 4 points, still constant time.

)

Assuming €q, W,

;.1 can be computed in O(277) time...
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Linear Prover: eq;

v=(r;_ [ 0)V(r,_y | 1)
equ[(ij, ...,be)] = v;l $€Q,_q [(l,bj+1, )] V7 + (1 — v, )(1 — 7, )

 €Qy can be computed in 0(26) ") time
2

1= 3 time.

=0(2
» €q; can be computed in O( ) O(
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Linear Prover: Wj

Computing Wj:

A

W.

J

W, [z € BY

(@511, 20)] 3

:(1,:Bj+1,...,x£):

(0, :Ijj_|_1, ceny CUK)
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Linear Prover: Wj

Computing Wj:
WO [QZ c [Be = Wi-l—].

A

Wj[(f’f'j+1a---7~"3£): = e~qO(""j) ' Wj—l <O7xj+17“'7x€): +

€q; ("“j) Wi :(1»%41» 75'76)

O(27) = O(2F177) = O(2"77) time!
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Linear Prover: Wj

Computing Wj:
WO [QZ c [Be = Wi-l—].

A

Wj[(f’f'j+1a---7~"32): = e~qO(""j) ‘ Wj—l (07xj+17“'7x€>: +

€q; ("“j) Wi :(1»%41» 75'76)




Linear Prover!



Communication O(Ig?(n))

» One sumcheck: 0(228”1 degj(fz-)) = O(7)

g=1

0 (fH z) _ o(d(d2+ 1)) _ 0(d?) = 0(1g%(n))

=1

38 /41



Verifier O(1g*(n) + n)

39 /41



Conclusion

Linear prover
Almost sublinear verifier

Sublinear communication costs

All in the size of the witness, not just the circuit

40 / 41



Conclusion

Linear prover
Almost sublinear verifier

Sublinear communication costs

All in the size of the witness, not just the circuit

Excellent construction for SNARKSs (Spartan, Lasso)
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