Succinct Proofs

GKR

Rasmus Kirk Jakobsen

2026-01-19

1. The GKR Protocol

2. Soundness

3. Efficiency

4. Need for Speed - A GKR-Based Grand Product Proof
5. The GKR-Based Grand Product Proof - Efficiency

2/41

The GKR Protocol

GKR Circuit

Layered arithmetic circuit C(w €) =y € F™
Only addition and multiplication gates

n inputs

m outputs,

d layers

4/ 41

Outputs Y

Layer 0

Layer 1

Layer 2

Inputs wy Wo Wy w,

5/41

Polynomial Extension of W,

W.(a) e B% — [
add.(a, b, c) € Bs+2sin 5 B

mul,(a, b, c) € B2 — B

6/ 41

Polynomial Extension of W,

W.(a) e B% — [
add.(a, b, c) € Bs+2sin 5 B

mul,(a, b, c) € B t25is1 — B

Wia)= > add;(a,b,c)(W,1(b) + W, (c)) +
b,ccB®i+1

~~

mul, (a, b,) - W, (b) - Wy, (c)

1

6/ 41

Proving the Output of the Circuit

« Prover claims output of circuit is y’ = W’
 Actual outputis y = W,

7/ 41

Proving the Output of the Circuit

« Prover claims output of circuit is y’ = W’
 Actual outputis y = W,

rep Fso W (r)=Wy(r) =W =W, = W' =W,

7/ 41

Wolr)= Y addy(r,b,c)(Wy(b) + Wi (c)) +

b,cc1

I;1\1110 (’I", b7 C) | I’}\VJl (b) | I7[/'/1 (C)

8/ 41

Wolr)= Y addy(r,b,c)(Wy(b) + Wi (c)) +

b,cc1

I;l\ﬁlo (’I", b7 C) | I’}\VJl (b) | I7[/'/1 (C)

Sumcheck polynomial
fo(b, €) = addy (r, b,) (W (b) + Wi (c)) + muly(r, b, c) - Wy (b) - Wy (c)

8/ 41

Wolr)= Y addy(r,b,c)(Wy(b) + Wi (c)) +

b,cc1

I;l\u/lO (’I", b7 C) | I’}\VJl (b) | I7[/'/1 (C)

Sumcheck polynomial
fo(b, €) = addy (r, b,) (W (b) + Wi (c)) + muly(r, b, c) - Wy (b) - Wy (c)

Last round of sumcheck
b/l, Ci ER [Fsi"‘l
fo(by,ct) = addy(r, by, ct) (W, (by) + Wy(ch)) +

~~

1(b1) - Wi (ef)

HT{IIO(TE)? bi? Ci))

8/ 41

Idea: Verity Evaluations using Sumcheck

f1(b, ¢) = add, (b, b, ¢) (W, (b) + Wy(c)) + mul, (b7, b,) - Wy(b) - Wy(c)

f1(b, ¢) = add, (cf, b, e) (Wy(b) + Wy(c)) + mul, (e}, b, c) - Wy (b) - Wy(c)

9/ 41

Exponential!

Combining two claims to one

a(by, €p) = Wy(bg) + a - Wi (cp)

= (Z g&?il(b(’),b, C)<W2(b> + W2<C)) +r;1;11<b6>bac) ’ Wz(b) ' Wz(@) +

b,ccBs2

~~

Q- (Z add, (cj, b, C)<W2(b) + W2(C)) +mul, (c), b, ¢) - Wy(b) Wz(c))

b,ceB=2

= > add,(bg, b, c)(Wy(b) + Wy(c)) + mul, (by, b, ¢) - Wy(b) - Wy(c) +

b,ccBs2

o - add, (cf, b,) (W (b) + Wy(c)) + a - mul, (cf, b, c) - Wy(b) - Wy(c)

= > (add, (b}, b,¢) + o add, (ch, b, c)) (Wy(b) + Wy(c)) +

b,ceBs2

(mul, (b}, b, ¢) + a - muly (ch, b, e)) (Wy(b) - Wy(c))

11/ 41

Combining two claims to one

We have:

vy = p(Ty), Vg == p(7y)
Q(Xla) X2£) "= p(X17 "'7X€) + « - p<X€—|—17 ceey X2£g)

q(ry,79) =v; + - v,

12/ 41

Combining two claims to one

We have:

vy = p(Ty), Vg == p(7y)
Q(Xla) X2£) "= p(X17 "'7X€) + « - p<X€—|—17 ceey X2£g)

q(ry,mg) = vy + vy
Proof: Assume v; # p(ry) V vy # p(ry), but g is defined as above:

e(X) =v; + X vy — (p(ry) + X - p(ry))
deg(e) 1

F |F

Prle(a) =0 | e(X) # 0] =

12/ 41

Combining two claims to one

The next round we sumcheck:
f1(b,c) := (add, (b), b,c) + a - add, (cj, b, c)) (Wy(b) + Wy(c)) +

(mul (b, b, ¢) + o - muly (c), b, ¢)) (Wy(b) - Wy(c))

13/ 41

Combining two claims to one

The next round we sumcheck:
f1(b, €) == (add, (b), b, €) + o - add; (c5, b, €)) (W (B) + Wy(e)) +
(mul (b, b, ¢) + o - muly (c), b, ¢)) (Wy(b) - Wy(c))
And the verifier checks:
m, = (add, (bj_,, b}, c]) + o - add;(c}_1, b}, ;)) (ve; + ver) +

(mul;(b]_,, b}, ¢}) + o - mul(c)_y, b}, ¢])) (vg; - vy)

13/ 41

Full Protocol: Preprocessing

P sends W’ to U claiming that W’ = W),. U then picks out a random 7. After this
point, P wants to prove that my; = W, (7).

%744 ~
W’ : B% — [F rr g FPo,my = W'(r)

14/ 41

Full Protocol: Round zero

~~

fo(b,) = addy(r, b, c) (W, (b) + Wy(c)) + muly(r, b, c) - Wy (b) - Wy (c)

Zb,CEle fO(b7 C) = my

N
~

At the end of the protocol, P sends U the evaluations of Vyy, = VV1 (bp) and v,/ :=
Wl (¢}), so U can make the final check in the sumcheck protocol.

Upy» Ve mg = addy (7, b, f) - (Ve + Ve) +
Upy = W, (bg), vey = Wi(c)) ’

— ’

15/ 41

Full Protocol: Round ¢

~~ ~~

fi(b,c) := (add,(bj_;,b,¢) + o - add;(c]_1,b,¢)) (W11 (b) + W11 (c)) +

~~

(mul;(b_,b,¢) + a-mul,(c] ;,b,¢)) (W1 (b) - W,y (c))

8

f’L<b7 C) < (8% ER [F
Zb,ce[ﬂasiﬂ fi(b,€) =m,

i N\
A\ [4

m} o= (add(bf_1,bf,¢;) +a- addi(ef 1, b}, ¢f)) (ve; + vey) +

7 29 —1

1—19 2y =1 1—19 ¥ =1

(mul; (b]_y, b}, ¢}) + a - muly(c]_;,b},¢})) (vp; - V)

— T / Vpry U
vy = Wig1(b5), b2 Ve; .
o P My =M,

/

c, = i+1<ci)

16 / 41

Full Protocol: Round d

At the input layer d, U has two claims Vg, and v, . U constructs Wd from w. U
then finally checks that W, (b/,_ 1) = Vpy, and W,(c)y) < v,

Cag—1°

17 / 41

Soundness

Soundness: Checks

Preprocessing:
o CheCk W/ é WO

« Soundness Error: s, /||

19/ 41

Soundness: Checks

Preprocessing:
o CheCk W/ é WO

« Soundness Error: s, /||

Sumcheck Round j:

+ Check £ (r; 1) £ £, (0) + £;7 (1)
« Soundness Error: deg(f-(ﬁ /|F| = 2/|F|

(/

19/ 41

Soundness: Checks

Preprocessing:
o CheCk W/ é WO

« Soundness Error: s, /||

Sumcheck Round j:

+ Check £ (r; 1) £ £, (0) + £;7 (1)
» Soundness Error: deg f.(J) /|F| = 2/|F|

(/

GKR Round ::

o Check: m; = m/

« Soundness Error: W%\

19/ 41

Soundness Bound

20/ 41

Efficiency

Efficiency: Communication O(S, + d - 1g(.5))

e Preprocessing: W', which has size 2% = §,.
« Round i: O(s; ;) |
> One sumcheck: O(E 1 deg, (f())) = 0(8;41)

71=1

22/ 41

Efficiency: Communication O(S, + d - 1g(.5))

e Preprocessing: W', which has size 2% = §,.
« Round i: O(s; ;) |
> One sumcheck: O(E 1 deg, (f())) = 0(8;41)

71=1

O(SOJFESM): (SO—I—Zlg) O(S, + d - 1g(9))

22/ 41

Efficiency: Verifier O(S, + d - 1g(S) + S + n)

« Proportional to communication cost: O(S, + d - 1g(S))
. Evaluating add, mul: O(t) (bounded by O(S))
o The input layer: O(n)

23/ 41

Efficiency: Verifier O(S, + d - 1g(S) + S + n)

« Proportional to communication cost: O(S, + d - 1g(S))
. Evaluating add, mul: O(t) (bounded by O(S))
o The input layer: O(n)

O(Sy+d-lg(S)+t+n)=0(S, +d-1g(S)+S+n)

23/ 41

Efficiency: Prover O(S®)

Efficiency: Prover Runtime per Sumcheck
O(2°-T) =0(2%#1 - T)

(SZ1 - (S; +Sis1))

(St + S:5%1)

0,
0,

24 / 41

Efficiency: Prover O(S®)

Efficiency: Prover Runtime per Sumcheck
O(2°-T) =0(2%#1 - T)
= O(S%1 - (Si + Sit1))
— O(SEH + SiSz'2—|—1)
Efficiency: Prover Total

O(dz_f(Sz'SiQH + S?—i—l)) = 0(5°)

1=0

24 / 41

Need for Speed - A GKR-
Based Grand Product Proof

The Grand Product Proof

Layer 0

Layer 1

Layer 2

26 / 41

The Grand Product Proof

Layer 0

Layer 1

Layer 2

Wi(a)=> eq(a,b) - W, (b] 0)- W, (b 1)
beB?

26 / 41

The Grand Product Proof

Layer 0

Layer 1

Layer 2

Wi(a)=) eq(a,b)- Wi (b | 0) W1 (b 1)

beB?
8’1:22'7 S,L:2Z
d o
52227’:2‘”1—1:27},—1
2=0

26 / 41

The Sumcheck Polynomial

q(r;_1) =W 1 (r;1 || 0) +aW,; (r,; || 1)

= (Z €Qer, , 1 0)(B) - Wipa (b 0)- Wiy (b | 1)) T

beB?

(Z o €q(_, 1 1)(B) Wipa (b 0)- Wi (b | 1))

bel?

= Z (5%«@._1 10)(b) +a-eqp. 1)(5)) Wi (0] 0)- Wia (b 1)
beB:

27 / 41

The Sumcheck Polynomial

q(r;_1) =W 1 (r;1 || 0) +aW,; (r,; || 1)

= (Z €Qer, , 1 0)(B) - Wipa (b 0)- Wiy (b | 1)) T

beB?

(Z o €q(_, 1 1)(B) Wipa (b 0)- Wi (b | 1))

bel?

= Z (5%«@._1 10)(b) +a-eqp. 1)(5)) Wi (0] 0)- Wia (b 1)
beB:

Sumcheck Polynomial:

fi(b) = (e~q('ri_1 || 0)(b) +a-eq, 1)(b)) ' Wz’—l—l(b | 0) - Wi—l—l(b | 1)

27 / 41

What about round zero? There’s only a single gate.

28 / 41

What about round zero? There’s only a single gate.

We simply skip it!

28 / 41

What about round zero? There’s only a single gate.

We simply skip it!

Wo(z) = eq(z,b) - Wy(b || 0) - Wy(b | 1)
becBO
= &q(, () - W1(0)] 0)- Wi(() | 1)
— Wl(o)) N1(1>

28 / 41

Full Protocol: Preprocessing

The prover sends evaluations véo), vgo) claiming that 'UE,O) = Wl (0), v§°> = Wl (1) and

thus y = v(()o) - ")(10)-

~ (0) ,(0)
”(()0) = W1(0), Yo » Y1

29/ 41

Full Protocol: Round ¢

fi(b) = (e~Q(rH 10)(b) +a-€q,. 1)(5)) Wipa(b] 0)- Wiy (b] 1)

«
fi(b) 4 acpl
Zb,cG[EBi fz(b) = m;
i = (4) , (2) 7 - i i
o) = W, (r, | O), v, v m; £ € o(rs) vy) +
vy == Wi (r; | 1) a- €, , 1T vy - vy

30/ 41

Full Protocol: Round d

At the input layer d, U has two claims. U constructs Wd from w and perform a final

check.
d—1) 2 T
o L W(ryy | 0) A
d—1) 2 T
A LWy (rg | 1)

31/41

The GKR-Based Grand
Product Proof - Efficiency

Linear Prover: Main idea

o If each round of sumcheck takes O(Zi_j) time, then:

O (Z 2”) =0 (i 2”) =0(2'—1) =0(2)

J=1 g=1

33/41

Linear Prover: Main idea

o If each round of sumcheck takes O(Zi_j) time, then:

O (Z 2”) =0 (i 2”) =0(2'—1) =0(2)

J=1 g=1

« Prover cost is dominated by the sumchecks, so this leads to:

O (Zd; 2%') = 0(2%1) = 0(2%) = O(n)

33/41

Linear Prover: Use Lookup Tables

34/ 41

Linear Prover: Use Lookup Tables

a — (’r']_, cee ?“j, t, .CC]_, cee LIJ‘Z),

"~ ~~

fila) = (e~Q(ri_1 || 0>(a) +a-eqq, | 1)(‘1)) -Wiii(a) - Wi (a)

=)

= (€qr,_, jo)(@) + - €44, | 1)(@)) - Wiyi(a) - Wiy (a)

 Constant time evaluation of f,!
 deg(f;) + 1 = 4 points, still constant time.

34/ 41

Linear Prover: Use Lookup Tables

a — (’r']_, cee ?“j, t, .CC]_, cee LIJ‘Z),

"~ ~~

fila) = (e~Q(ri_1 || 0>(a) +a-eqq, | 1)(‘1)) -Wiii(a) - Wi (a)

=)

= (€qr,_, jo)(@) + - €44, | 1)(@)) - Wiyi(a) - Wiy (a)

 Constant time evaluation of f,!
 deg(f;) + 1 = 4 points, still constant time.

)

Assuming €q, W,

;.1 can be computed in O(277) time...

34/ 41

Linear Prover: eq;

v=(r;_ [0)V(r,_y | 1)
equ[(ij, ...,be)] = v;l $€Q,_q [(l,bj+1,)] V7 + (1 — v,)(1 — 7,)

 €Qy can be computed in 0(26) ") time
2

1= 3 time.

=0(2
» €q; can be computed in O() O(

35/ 41

Linear Prover: Wj

Computing Wj:

A

W.

J

W, [z € BY

(@511, 20)] 3

:(1,:Bj+1,...,x£):

(0, :Ijj_|_1, ceny CUK)

36/ 41

Linear Prover: Wj

Computing Wj:
WO [QZ c [Be = Wi-l—].

A

Wj[(f’f'j+1a---7~"3£): = e~qO(""j) ' Wj—l <O7xj+17“'7x€): +

€q; ("“j) Wi :(1»%41» 75'76)

O(27) = O(2F177) = O(2"77) time!

36/ 41

Linear Prover: Wj

Computing Wj:
WO [QZ c [Be = Wi-l—].

A

Wj[(f’f'j+1a---7~"32): = e~qO(""j) ‘ Wj—l (07xj+17“'7x€>: +

€q; ("“j) Wi :(1»%41» 75'76)

Linear Prover!

Communication O(Ig?(n))

» One sumcheck: 0(228”1 degj(fz-)) = O(7)

g=1

0 (fH z) _ o(d(d2+ 1)) _ 0(d?) = 0(1g%(n))

=1

38 /41

Verifier O(1g*(n) + n)

39 /41

Conclusion

Linear prover
Almost sublinear verifier

Sublinear communication costs

All in the size of the witness, not just the circuit

40 / 41

Conclusion

Linear prover
Almost sublinear verifier

Sublinear communication costs

All in the size of the witness, not just the circuit

Excellent construction for SNARKSs (Spartan, Lasso)

40 / 41

Fin

	Agenda
	GKR Circuit
	Example
	Polynomial Extension of Wi
	Proving the Output of the Circuit
	Sumcheck
	Sumcheck polynomial
	Last round of sumcheck

	Idea: Verify Evaluations using Sumcheck
	Combining two claims to one
	Combining two claims to one
	Combining two claims to one
	Full Protocol: Preprocessing
	Full Protocol: Round zero
	Full Protocol: Round i
	Full Protocol: Round d
	Soundness: Checks
	Preprocessing:
	Sumcheck Round j:
	GKR Round i:

	Soundness Bound
	Efficiency: Communication O(S0 + d ⋅ lg(S))
	Efficiency: Verifier O(S0 + d ⋅ lg(S) + S + n)
	Efficiency: Prover O(S3)
	Efficiency: Prover Runtime per Sumcheck
	Efficiency: Prover Total

	The Grand Product Proof
	The Sumcheck Polynomial
	Round Zero?
	Full Protocol: Preprocessing
	Full Protocol: Round i
	Full Protocol: Round d
	Linear Prover: Main idea
	Linear Prover: Use Lookup Tables
	Linear Prover: eqj
	Linear Prover: Wj
	Computing Wj:
	Using Wj:

	Communication O(lg2(n))
	Verifier O(lg2(n) + n)
	Conclusion

