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The GKR Protocol



GKR Circuit

Layered arithmetic circuit 𝒞︀(𝒘 ∈ 𝔽𝑛) = 𝒚 ∈ 𝔽𝑚
• Only addition and multiplication gates

• 𝑛 inputs

• 𝑚 outputs,

• 𝑑 layers

4 / 41



Example

𝑆0 = 1, 𝑆1 = 2, 𝑆2 = 4, 𝑠𝑖 = lg(𝑆𝑖), 𝑛 = 4,𝑚 = 1, 𝑑 = 3

Outputs

Layer 0

Layer 1

Layer 2

Inputs

𝑦1

×0

×0 ×1

×00 ×01 ×10 ×11

𝑤1 𝑤2 𝑤3 𝑤4
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Polynomial Extension of 𝑊𝑖

𝑊𝑖(𝒂) ∈ 𝔹𝑠𝑖 → 𝔽

add𝑖(𝒂, 𝒃, 𝒄) ∈ 𝔹𝑠𝑖+2𝑠𝑖+1 → 𝔹

mul𝑖(𝒂, 𝒃, 𝒄) ∈ 𝔹𝑠𝑖+2𝑠𝑖+1 → 𝔹
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Polynomial Extension of 𝑊𝑖

𝑊𝑖(𝒂) ∈ 𝔹𝑠𝑖 → 𝔽

add𝑖(𝒂, 𝒃, 𝒄) ∈ 𝔹𝑠𝑖+2𝑠𝑖+1 → 𝔹

mul𝑖(𝒂, 𝒃, 𝒄) ∈ 𝔹𝑠𝑖+2𝑠𝑖+1 → 𝔹

𝑊̃𝑖(𝒂) = ∑
𝒃,𝒄∈𝔹𝑠𝑖+1

ãdd𝑖(𝒂, 𝒃, 𝒄)(𝑊̃𝑖+1(𝒃) + 𝑊̃𝑖+1(𝒄)) +

m̃ul𝑖(𝒂, 𝒃, 𝒄) ⋅ 𝑊̃𝑖+1(𝒃) ⋅ 𝑊̃𝑖+1(𝒄)
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Proving the Output of the Circuit

• Prover claims output of circuit is 𝒚′ ≅ 𝑊 ′
• Actual output is 𝒚 ≅ 𝑊0
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Proving the Output of the Circuit

• Prover claims output of circuit is 𝒚′ ≅ 𝑊 ′
• Actual output is 𝒚 ≅ 𝑊0

𝒓 ∈𝑅 𝔽𝑠0 : 𝑊̃ ′(𝒓) = 𝑊̃0(𝒓)⟹ 𝑊̃ ′ = 𝑊̃0⟹𝑊 ′ = 𝑊0
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Sumcheck

𝑊̃0(𝒓) = ∑
𝒃,𝒄∈𝔹𝑠1

ãdd0(𝒓, 𝒃, 𝒄)(𝑊̃1(𝒃) + 𝑊̃1(𝒄)) +

m̃ul0(𝒓, 𝒃, 𝒄) ⋅ 𝑊̃1(𝒃) ⋅ 𝑊̃1(𝒄)
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Sumcheck

𝑊̃0(𝒓) = ∑
𝒃,𝒄∈𝔹𝑠1

ãdd0(𝒓, 𝒃, 𝒄)(𝑊̃1(𝒃) + 𝑊̃1(𝒄)) +

m̃ul0(𝒓, 𝒃, 𝒄) ⋅ 𝑊̃1(𝒃) ⋅ 𝑊̃1(𝒄)

Sumcheck polynomial

𝑓0(𝒃, 𝒄) = ãdd0(𝒓, 𝒃, 𝒄)(𝑊̃1(𝒃) + 𝑊̃1(𝒄)) + m̃ul0(𝒓, 𝒃, 𝒄) ⋅ 𝑊̃1(𝒃) ⋅ 𝑊̃1(𝒄)
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Sumcheck

𝑊̃0(𝒓) = ∑
𝒃,𝒄∈𝔹𝑠1

ãdd0(𝒓, 𝒃, 𝒄)(𝑊̃1(𝒃) + 𝑊̃1(𝒄)) +

m̃ul0(𝒓, 𝒃, 𝒄) ⋅ 𝑊̃1(𝒃) ⋅ 𝑊̃1(𝒄)

Sumcheck polynomial

𝑓0(𝒃, 𝒄) = ãdd0(𝒓, 𝒃, 𝒄)(𝑊̃1(𝒃) + 𝑊̃1(𝒄)) + m̃ul0(𝒓, 𝒃, 𝒄) ⋅ 𝑊̃1(𝒃) ⋅ 𝑊̃1(𝒄)

Last round of sumcheck

𝒃′1, 𝒄′1 ∈𝑅 𝔽𝑠𝑖+1

𝑓0(𝒃′1, 𝒄′1) = ãdd0(𝒓, 𝒃′1, 𝒄′1)(𝑊̃1(𝒃′1) + 𝑊̃1(𝒄′1)) +

m̃ul0(𝒓′0, 𝒃′1, 𝒄′1) ⋅ 𝑊̃1(𝒃′1) ⋅ 𝑊̃1(𝒄′1)

8 / 41



Idea: Verify Evaluations using Sumcheck

𝑓1(𝒃, 𝒄) = ãdd1(𝒃′0, 𝒃, 𝒄)(𝑊̃2(𝒃) + 𝑊̃2(𝒄)) + m̃ul1(𝒃′1, 𝒃, 𝒄) ⋅ 𝑊̃2(𝒃) ⋅ 𝑊̃2(𝒄)

𝑓1(𝒃, 𝒄) = ãdd1(𝒄′0, 𝒃, 𝒄)(𝑊̃2(𝒃) + 𝑊̃2(𝒄)) + m̃ul1(𝒄′1, 𝒃, 𝒄) ⋅ 𝑊̃2(𝒃) ⋅ 𝑊̃2(𝒄)
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Exponential!



Combining two claims to one

𝑞(𝒃′0, 𝒄′0) = 𝑊̃1(𝒃′0) + 𝛼 ⋅ 𝑊̃1(𝒄′0)

= ( ∑
𝒃,𝒄∈𝔹𝑠2

ãdd1(𝒃′0, 𝒃, 𝒄)(𝑊̃2(𝒃) + 𝑊̃2(𝒄)) + m̃ul1(𝒃′0, 𝒃, 𝒄) ⋅ 𝑊̃2(𝒃) ⋅ 𝑊̃2(𝒄)) +

𝛼 ⋅ ( ∑
𝑏,𝑐∈𝔹𝑠2

ãdd1(𝒄′0, 𝒃, 𝒄)(𝑊̃2(𝒃) + 𝑊̃2(𝒄)) + m̃ul1(𝒄′0, 𝒃, 𝒄) ⋅ 𝑊̃2(𝒃) ⋅ 𝑊̃2(𝒄))

= ∑
𝒃,𝒄∈𝔹𝑠2

ãdd1(𝒃′0, 𝒃, 𝒄)(𝑊̃2(𝒃) + 𝑊̃2(𝒄)) + m̃ul1(𝒃′0, 𝒃, 𝒄) ⋅ 𝑊̃2(𝒃) ⋅ 𝑊̃2(𝒄) +

𝛼 ⋅ ãdd1(𝒄′0, 𝒃, 𝒄)(𝑊̃2(𝒃) + 𝑊̃2(𝒄)) + 𝛼 ⋅ m̃ul1(𝒄′0, 𝒃, 𝒄) ⋅ 𝑊̃2(𝒃) ⋅ 𝑊̃2(𝒄)

= ∑
𝒃,𝒄∈𝔹𝑠2

(ãdd1(𝒃′0, 𝒃, 𝒄) + 𝛼 ⋅ ãdd1(𝒄′0, 𝒃, 𝒄))(𝑊̃2(𝒃) + 𝑊̃2(𝒄)) +

(m̃ul1(𝒃′0, 𝒃, 𝒄) + 𝛼 ⋅ m̃ul1(𝒄′0, 𝒃, 𝒄))(𝑊̃2(𝒃) ⋅ 𝑊̃2(𝒄))
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Combining two claims to one

We have:

𝑣1 ≔ 𝑝(𝒓1), 𝑣2 ≔ 𝑝(𝒓2)
𝑞(𝑋1, .., 𝑋2ℓ) ≔ 𝑝(𝑋1,…,𝑋ℓ) + 𝛼 ⋅ 𝑝(𝑋ℓ+1,…,𝑋2ℓ𝑔)

𝑞(𝒓1, 𝒓2) ≟ 𝑣1 + 𝛼 ⋅ 𝑣2
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Combining two claims to one

We have:

𝑣1 ≔ 𝑝(𝒓1), 𝑣2 ≔ 𝑝(𝒓2)
𝑞(𝑋1, .., 𝑋2ℓ) ≔ 𝑝(𝑋1,…,𝑋ℓ) + 𝛼 ⋅ 𝑝(𝑋ℓ+1,…,𝑋2ℓ𝑔)

𝑞(𝒓1, 𝒓2) ≟ 𝑣1 + 𝛼 ⋅ 𝑣2

Proof: Assume 𝑣1 ≠ 𝑝(𝒓1) ∨ 𝑣2 ≠ 𝑝(𝒓2), but 𝑞 is defined as above:

𝑒(𝑋) = 𝑣1 +𝑋 ⋅ 𝑣2 − (𝑝(𝒓1) + 𝑋 ⋅ 𝑝(𝒓2))

Pr[𝑒(𝛼) = 0 | 𝑒(𝑋) ≠ 0] = deg(𝑒)
|𝔽|

= 1
|𝔽|
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Combining two claims to one

The next round we sumcheck:

𝑓1(𝒃, 𝒄) ≔ (ãdd1(𝒃′0, 𝒃, 𝒄) + 𝛼 ⋅ ãdd1(𝒄′0, 𝒃, 𝒄))(𝑊̃2(𝒃) + 𝑊̃2(𝒄)) +

(m̃ul1(𝒃′0, 𝒃, 𝒄) + 𝛼 ⋅ m̃ul1(𝒄′0, 𝒃, 𝒄))(𝑊̃2(𝒃) ⋅ 𝑊̃2(𝒄))
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Combining two claims to one

The next round we sumcheck:

𝑓1(𝒃, 𝒄) ≔ (ãdd1(𝒃′0, 𝒃, 𝒄) + 𝛼 ⋅ ãdd1(𝒄′0, 𝒃, 𝒄))(𝑊̃2(𝒃) + 𝑊̃2(𝒄)) +

(m̃ul1(𝒃′0, 𝒃, 𝒄) + 𝛼 ⋅ m̃ul1(𝒄′0, 𝒃, 𝒄))(𝑊̃2(𝒃) ⋅ 𝑊̃2(𝒄))

And the verifier checks:

𝑚𝑖 ≟ (ãdd𝑖(𝒃′𝑖−1, 𝒃′𝑖, 𝒄′𝑖) + 𝛼 ⋅ ãdd𝑖(𝒄′𝑖−1, 𝒃′𝑖, 𝒄′𝑖))(𝑣𝒃′𝑖 + 𝑣𝒄′𝑖) +

(m̃ul𝑖(𝒃′𝑖−1, 𝒃′𝑖, 𝒄′𝑖) + 𝛼 ⋅ m̃ul𝑖(𝒄′𝑖−1, 𝒃′𝑖, 𝒄′𝑖))(𝑣𝒃′𝑖 ⋅ 𝑣𝒄′𝑖)
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Full Protocol: Preprocessing

𝑊 ′

𝒫︀ sends 𝑊 ′ to 𝒱︀ claiming that 𝑊 ′ = 𝑊0. 𝒱︀ then picks out a random 𝒓. After this 

point, 𝒫︀ wants to prove that 𝑚0 = 𝑊̃0(𝒓).

𝑊 ′ : 𝔹𝑠0 → 𝔽 𝒓 ∈𝑅 𝔽𝑠0 ,𝑚0 ≔ 𝑊̃ ′(𝒓)
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Full Protocol: Round zero

∑𝒃,𝒄∈𝔹𝑠1 𝑓0(𝒃, 𝒄) ≟ 𝑚0

𝑣𝒃′0 , 𝑣𝒄′0

𝑓0(𝒃, 𝒄) = ãdd0(𝒓, 𝒃, 𝒄)(𝑊̃1(𝒃) + 𝑊̃1(𝒄)) + m̃ul0(𝒓, 𝒃, 𝒄) ⋅ 𝑊̃1(𝒃) ⋅ 𝑊̃1(𝒄)

At the end of the protocol, 𝒫︀ sends 𝒱︀ the evaluations of 𝑣𝒃′0 ≔ 𝑊̃1(𝒃
′
0) and 𝑣𝒄′0 ≔

𝑊̃1(𝒄′0), so 𝒱︀ can make the final check in the sumcheck protocol.

𝑣𝒃′0 ≔ 𝑊̃1(𝒃
′
0), 𝑣𝒄′0 ≔ 𝑊̃1(𝒄

′
0)

𝑚0 ≟ ãdd0(𝒓, 𝒃′0, 𝒄′0) ⋅ (𝑣𝒃′0 + 𝑣𝒄′0) +

m̃ul0(𝒓, 𝒃′0, 𝒄′0) ⋅ 𝑣𝒃′0 ⋅ 𝑣𝒄′0
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Full Protocol: Round 𝑖

𝛼

∑𝒃,𝒄∈𝔹𝑠𝑖+1 𝑓𝑖(𝒃, 𝒄) ≟ 𝑚𝑖

𝑣𝒃′𝑖 , 𝑣𝒄′𝑖

𝑓𝑖(𝒃, 𝒄) ≔ (ãdd𝑖(𝒃′𝑖−1, 𝒃, 𝒄) + 𝛼 ⋅ ãdd𝑖(𝒄′𝑖−1, 𝒃, 𝒄))(𝑊̃𝑖+1(𝒃) + 𝑊̃𝑖+1(𝒄)) +

(m̃ul𝑖(𝒃′𝑖−1, 𝒃, 𝒄) + 𝛼 ⋅ m̃ul𝑖(𝒄′𝑖−1, 𝒃, 𝒄))(𝑊̃𝑖+1(𝒃) ⋅ 𝑊̃𝑖+1(𝒄))

𝑓𝑖(𝒃, 𝒄) 𝛼 ∈𝑅 𝔽

𝑚′𝑖 ≔ (ãdd𝑖(𝒃′𝑖−1, 𝒃′𝑖, 𝒄′𝑖) + 𝛼 ⋅ ãdd𝑖(𝒄′𝑖−1, 𝒃′𝑖, 𝒄′𝑖))(𝑣𝒃′𝑖 + 𝑣𝒄′𝑖) +

(m̃ul𝑖(𝒃′𝑖−1, 𝒃′𝑖, 𝒄′𝑖) + 𝛼 ⋅ m̃ul𝑖(𝒄′𝑖−1, 𝒃′𝑖, 𝒄′𝑖))(𝑣𝒃′𝑖 ⋅ 𝑣𝒄′𝑖)

𝑣𝒃′𝑖 ≔ 𝑊̃𝑖+1(𝒃
′
𝑖),

𝑣𝒄′𝑖 ≔ 𝑊̃𝑖+1(𝒄
′
𝑖)

𝑚𝑖 ≟ 𝑚′𝑖
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Full Protocol: Round 𝑑

At the input layer 𝑑, 𝒱︀ has two claims 𝑣𝒃′𝑑−1  and 𝑣𝒄′𝑑−1 . 𝒱︀ constructs 𝑊̃𝑑 from 𝒘. 𝒱︀ 

then finally checks that 𝑊̃𝑑(𝒃′𝑑−1) ≟ 𝑣𝒃′𝑑−1  and 𝑊̃𝑑(𝒄′𝑑−1) ≟ 𝑣𝒄′𝑑−1 .

                          
𝑊̃𝑑(𝒃′𝑑−1) ≟ 𝑣𝒃′𝑑−1 ∧

𝑊̃𝑑(𝒄′𝑑−1) ≟ 𝑣𝒄′𝑑−1
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Soundness



Soundness: Checks

Preprocessing:

• Check 𝑊̃ ′ ≟ 𝑊̃0
• Soundness Error: 𝑠0/|𝔽|
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Soundness: Checks

Preprocessing:

• Check 𝑊̃ ′ ≟ 𝑊̃0
• Soundness Error: 𝑠0/|𝔽|

Sumcheck Round 𝑗:
• Check 𝑓 (𝑗)𝑖 (𝑟𝑗−1) ≟ 𝑓

(𝑗)
𝑖 (0) + 𝑓

(𝑗)
𝑖 (1)

• Soundness Error: deg(𝑓 (𝑗)𝑖 )/|𝔽| = 2/|𝔽|

19 / 41



Soundness: Checks

Preprocessing:

• Check 𝑊̃ ′ ≟ 𝑊̃0
• Soundness Error: 𝑠0/|𝔽|

Sumcheck Round 𝑗:
• Check 𝑓 (𝑗)𝑖 (𝑟𝑗−1) ≟ 𝑓

(𝑗)
𝑖 (0) + 𝑓

(𝑗)
𝑖 (1)

• Soundness Error: deg(𝑓 (𝑗)𝑖 )/|𝔽| = 2/|𝔽|

GKR Round 𝑖:
• Check: 𝑚𝑖 ≟ 𝑚′𝑖
• Soundness Error: 1|𝔽|
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Soundness Bound

𝛿𝑠 = Pr[𝐸𝑊 ′ ] + ⋃
𝑑−1

𝑖=0
⋃
𝑠𝑖

𝑗=0
Pr[𝐸𝑗] + ⋃

𝑑−1

𝑖=1
Pr[𝐸𝑖]

≤ 𝑠0
|𝔽|
+∑
𝑑−1

𝑖=0
∑
𝑠𝑖

𝑗=0

2
|𝔽|
+∑
𝑑−1

𝑖=1

1
|𝔽|

= 𝑠0
|𝔽|
+∑
𝑑−1

𝑖=0
𝑠𝑖
2
|𝔽|
+∑
𝑑−1

𝑖=1

1
|𝔽|

≤ lg(𝑆)
|𝔽|

+∑
𝑑

𝑖=0

2 lg(𝑆)
|𝔽|

+∑
𝑑

𝑖=1

1
|𝔽|

= 3𝑑 lg(𝑆) + 𝑑
|𝔽|
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Efficiency



Efficiency: Communication 𝑂(𝑆0 + 𝑑 ⋅ lg(𝑆))

• Preprocessing: 𝑊 ′, which has size 2𝑠0 = 𝑆0.
• Round 𝑖: 𝑂(𝑠𝑖+1)

‣ One sumcheck: 𝑂(∑2𝑠𝑖+1𝑗=1 deg𝑗(𝑓
(𝑗)
𝑖 )) = 𝑂(𝑠𝑖+1)
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Efficiency: Communication 𝑂(𝑆0 + 𝑑 ⋅ lg(𝑆))

• Preprocessing: 𝑊 ′, which has size 2𝑠0 = 𝑆0.
• Round 𝑖: 𝑂(𝑠𝑖+1)

‣ One sumcheck: 𝑂(∑2𝑠𝑖+1𝑗=1 deg𝑗(𝑓
(𝑗)
𝑖 )) = 𝑂(𝑠𝑖+1)

𝑂(𝑆0 +∑
𝑑−1

𝑖=0
𝑠𝑖+1) = 𝑂(𝑆0 +∑

𝑑−1

𝑖=0
lg(𝑆𝑖)) = 𝑂(𝑆0 + 𝑑 ⋅ lg(𝑆))
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Efficiency: Verifier 𝑂(𝑆0 + 𝑑 ⋅ lg(𝑆) + 𝑆 + 𝑛)

• Proportional to communication cost: 𝑂(𝑆0 + 𝑑 ⋅ lg(𝑆))
• Evaluating ãdd, m̃ul: 𝑂(𝑡) (bounded by 𝑂(𝑆))
• The input layer: 𝑂(𝑛)
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Efficiency: Verifier 𝑂(𝑆0 + 𝑑 ⋅ lg(𝑆) + 𝑆 + 𝑛)

• Proportional to communication cost: 𝑂(𝑆0 + 𝑑 ⋅ lg(𝑆))
• Evaluating ãdd, m̃ul: 𝑂(𝑡) (bounded by 𝑂(𝑆))
• The input layer: 𝑂(𝑛)

𝑂(𝑆0 + 𝑑 ⋅ lg(𝑆) + 𝑡 + 𝑛) = 𝑂(𝑆0 + 𝑑 ⋅ lg(𝑆) + 𝑆 + 𝑛)
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Efficiency: Prover 𝑂(𝑆3)

Efficiency: Prover Runtime per Sumcheck

𝑂(2ℓ ⋅ 𝑇 ) = 𝑂(22𝑠𝑖+1 ⋅ 𝑇 )

= 𝑂(𝑆2𝑖+1 ⋅ (𝑆𝑖 + 𝑆𝑖+1))

= 𝑂(𝑆3𝑖+1 + 𝑆𝑖𝑆2𝑖+1)
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Based Grand Product Proof
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𝑠𝑖 = 𝑖, 𝑆𝑖 = 2𝑖

𝑆 =∑
𝑑

𝑖=0
2𝑖 = 2𝑑+1 − 1 = 2𝑛 − 1
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The Sumcheck Polynomial

𝑞(𝒓𝑖−1) = 𝑊̃𝑖+1(𝒓𝑖−1 ‖ 0) + 𝛼𝑊̃𝑖+1(𝒓𝑖−1 ‖ 1)

= (∑
𝒃∈𝔹𝑖

ẽq(𝒓𝑖−1 ‖ 0)(𝒃) ⋅ 𝑊̃𝑖+1(𝒃 ‖ 0) ⋅ 𝑊̃𝑖+1(𝒃 ‖ 1)) +

(∑
𝒃∈𝔹𝑖
𝛼 ⋅ ẽq(𝒓𝑖−1 ‖ 1)(𝒃) ⋅ 𝑊̃𝑖+1(𝒃 ‖ 0) ⋅ 𝑊̃𝑖+1(𝒃 ‖ 1))

= ∑
𝒃∈𝔹𝑖
(ẽq(𝒓𝑖−1 ‖ 0)(𝒃) + 𝛼 ⋅ ẽq(𝒓𝑖−1 ‖ 1)(𝒃)) ⋅ 𝑊̃𝑖+1(𝒃 ‖ 0) ⋅ 𝑊̃𝑖+1(𝒃 ‖ 1)
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Round Zero?

What about round zero? There’s only a single gate.
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Round Zero?

What about round zero? There’s only a single gate.

We simply skip it!

𝑊̃0(𝑥) = ∑
𝑏∈𝔹0

ẽq(𝑥, 𝑏) ⋅ 𝑊̃1(𝑏 ‖ 0) ⋅ 𝑊̃1(𝑏 ‖ 1)

= ẽq(𝑥, ()) ⋅ 𝑊̃1(() ‖ 0) ⋅ 𝑊̃1(() ‖ 1)

= 𝑊̃1(0) ⋅ 𝑊̃1(1)
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Full Protocol: Preprocessing

𝑣(0)0 , 𝑣
(0)
1

The prover sends evaluations 𝑣(0)0 , 𝑣
(0)
1  claiming that 𝑣(0)0 = 𝑊̃1(0), 𝑣

(0)
1 = 𝑊̃1(1) and 

thus 𝑦 = 𝑣(0)0 ⋅ 𝑣
(0)
1 .

𝑣(0)0 ≔ 𝑊̃1(0),

𝑣(0)1 ≔ 𝑊̃1(1)
𝑚0 ≔ 𝑣

(0)
0 ⋅ 𝑣

(0)
1
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Full Protocol: Round 𝑖

𝛼

∑𝒃,𝒄∈𝔹𝑖 𝑓
𝑖(𝒃) ≟ 𝑚𝑖

𝑣(𝑖)0 , 𝑣
(𝑖)
1

𝑓𝑖(𝒃) = (ẽq(𝒓𝑖−1 ‖ 0)(𝒃) + 𝛼 ⋅ ẽq(𝒓𝑖−1 ‖ 1)(𝒃)) ⋅ 𝑊̃𝑖+1(𝒃 ‖ 0) ⋅ 𝑊̃𝑖+1(𝒃 ‖ 1)

𝑓𝑖(𝒃) 𝛼 ∈𝑅 𝔽

𝑣(𝑖)0 ≔ 𝑊̃𝑖+1(𝒓𝑖 ‖ 0),

𝑣(𝑖)1 ≔ 𝑊̃𝑖+1(𝒓𝑖 ‖ 1)

𝑚𝑖 ≟ ẽq(𝒓𝑖−1 ‖ 0)(𝒓𝑖) ⋅ 𝑣
(𝑖)
0 ⋅ 𝑣

(𝑖)
1 +

𝛼 ⋅ ẽq(𝒓𝑖−1 ‖ 1)(𝒓𝑖) ⋅ 𝑣
(𝑖)
0 ⋅ 𝑣

(𝑖)
1
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Full Protocol: Round 𝑑

At the input layer 𝑑, 𝒱︀ has two claims. 𝒱︀ constructs 𝑊̃𝑑 from 𝒘 and perform a final 

check.

                                  
𝑣(𝑑−1)0 ≟ 𝑊̃𝑑(𝑟𝑑−1 ‖ 0) ∧

𝑣(𝑑−1)1 ≟ 𝑊̃𝑑(𝑟𝑑−1 ‖ 1)
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The GKR-Based Grand 

Product Proof - Efficiency



Linear Prover: Main idea

• If each round of sumcheck takes 𝑂(2𝑖−𝑗) time, then:

𝑂(∑
𝑖

𝑗=1
2𝑖−𝑗) = 𝑂(∑

𝑖−1

𝑗=1
2𝑖−𝑗) = 𝑂(2𝑖 − 1) = 𝑂(2𝑖)
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2𝑖−𝑗) = 𝑂(∑

𝑖−1

𝑗=1
2𝑖−𝑗) = 𝑂(2𝑖 − 1) = 𝑂(2𝑖)

• Prover cost is dominated by the sumchecks, so this leads to:

𝑂(∑
𝑑

𝑖=0
2𝑖) = 𝑂(2𝑑+1) = 𝑂(2𝑑) = 𝑂(𝑛)
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Linear Prover: Use Lookup Tables

𝒂 = (𝑟1,…, 𝑟𝑗, 𝑡, 𝑥1,…, 𝑥𝑖),

𝑓𝑖(𝒂) = (ẽq(𝒓𝑖−1 ‖ 0)(𝒂) + 𝛼 ⋅ ẽq(𝒓𝑖−1 ‖ 1)(𝒂)) ⋅ 𝑊̃𝑖+1(𝒂) ⋅ 𝑊̃𝑖+1(𝒂)

= (êq(𝒓𝑖−1 ‖ 0)(𝒂) + 𝛼 ⋅ êq(𝒓𝑖−1 ‖ 1)(𝒂)) ⋅ 𝑊̂𝑖+1(𝒂) ⋅ 𝑊̂𝑖+1(𝒂)
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• deg(𝑓𝑖) + 1 = 4 points, still constant time.
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= (êq(𝒓𝑖−1 ‖ 0)(𝒂) + 𝛼 ⋅ êq(𝒓𝑖−1 ‖ 1)(𝒂)) ⋅ 𝑊̂𝑖+1(𝒂) ⋅ 𝑊̂𝑖+1(𝒂)

• Constant time evaluation of 𝑓𝑖!
• deg(𝑓𝑖) + 1 = 4 points, still constant time.

Assuming êq, 𝑊̂𝑖+1 can be computed in 𝑂(2𝑖−𝑗) time…
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Linear Prover: êq𝑗

𝒗 = (𝒓𝑖−1 ‖ 0) ∨ (𝒓𝑖−1 ‖ 1),

êq𝑗[(𝑏𝑗+1,…, 𝑏ℓ)] = 𝑣−1𝑗 ⋅ êq𝑗−1[(1, 𝑏𝑗+1,…, 𝑏ℓ)] ⋅ 𝑣𝑗𝑟𝑗 + (1 − 𝑣𝑗)(1 − 𝑟𝑗)

• êq0 can be computed in 𝑂(2ℓ) = 𝑂(2𝑖) time

• êq𝑗 can be computed in 𝑂(2ℓ−𝑗) = 𝑂(2𝑖−𝑗) time.
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Linear Prover: Ŵ𝑗

Computing Ŵ𝑗:

𝑊̂0[𝒙 ∈ 𝔹ℓ] ≔ 𝑊𝑖+1

𝑊̂𝑗[(𝑥𝑗+1,…, 𝑥ℓ)] ≔ ẽq0(𝑟𝑗) ⋅ 𝑊̂𝑗−1[(0, 𝑥𝑗+1,…, 𝑥ℓ)] +

ẽq1(𝑟𝑗) ⋅ 𝑊̂𝑗−1[(1, 𝑥𝑗+1,…, 𝑥ℓ)]

36 / 41



Linear Prover: Ŵ𝑗
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𝑂(2ℓ−𝑗) = 𝑂(2𝑖+1−𝑗) = 𝑂(2𝑖−𝑗) time!

Using Ŵ𝑗:

𝑊̃(𝑟1,…, 𝑟𝑗−1, 𝑡, 𝑥𝑗+1,…, 𝑥ℓ) = ẽq0(𝑡) ⋅ 𝑊̂𝑗−1[(0, 𝑥𝑗+1,…, 𝑥ℓ)] +

ẽq1(𝑡) ⋅ 𝑊̂𝑗−1[(1, 𝑥𝑗+1,…, 𝑥ℓ)]
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Linear Prover!



Communication 𝑂(lg2(𝑛))

• Round 𝑖: 𝑂(𝑠𝑖+1)
‣ One sumcheck: 𝑂(∑2𝑠𝑖+1𝑗=1 deg𝑗(𝑓𝑖)) = 𝑂(𝑖)

𝑂(∑
𝑑−1

𝑖=1
𝑖) = 𝑂(𝑑(𝑑 + 1)

2
) = 𝑂(𝑑2) = 𝑂(lg2(𝑛))
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Verifier 𝑂(lg2(𝑛) + 𝑛)

𝑂(lg2(𝑛) + 𝑡 + 𝑛) = 𝑂(lg2(𝑛) +∑
𝑑−1

𝑖=1
𝑖 + 𝑛)

= 𝑂(lg2(𝑛) + lg2(𝑛) + 𝑛)

= 𝑂(lg2(𝑛) + 𝑛)
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Conclusion

• Linear prover

• Almost sublinear verifier

• Sublinear communication costs

• All in the size of the witness, not just the circuit
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Conclusion

• Linear prover

• Almost sublinear verifier

• Sublinear communication costs

• All in the size of the witness, not just the circuit

Excellent construction for SNARKs (Spartan, Lasso)
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Fin
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